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AbstractÐCategorical variable images frequently present unrealistic small scale variations (noise) that
are an artefact of measurement error or the geostatistical simulation method. In addition to their
unpleasing appearance, these variations may have an impact on subsequent petrophysical property
modeling and ¯ow simulation. Thus, there is a need to clean such realizations without altering their
desirable features (reproduction of local data and large scale spatial structure). This paper presents a
straightforward algorithm and program for such cleaning. Existing algorithms such as erosion/dilation,
quantile-transformation, or iterative simulated annealing-based approaches for image cleaning have sig-
ni®cant limitations when dealing with more than two categories. The key idea behind the proposed
method is to retain at each location the most probable lithofacies type based on the surrounding litho-
facies types, the proximity to conditioning data, and any mismatch from the global target proportion.
A number of examples are presented. FORTRAN source code for the proposed algorithm, available at
the IAMG web site, is documented. # 1998 Elsevier Science Ltd. All rights reserved

Code available at http://www.iamg.org/CGEditor/index.htm
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INTRODUCTION

Cell-based categorical variable simulation tech-

niques are commonly applied to create lithofacies
models prior to porosity and permeability modeling.

The sequential indicator simulation (sisim) algor-
ithm is widely used for a number of reasons: (1)
local data are reproduced at their exact locations by

construction, (2) there is an e�ective statistical con-
trol through variograms, (3) soft seismic data and

large scale regional trends in lithofacies proportions
can be accounted for, and (4) the results appear

realistic for geological settings where there are no
clear geologic facies objects. Alternative cell-based

modeling techniques such as truncated Gaussian
and simulated annealing approaches are also used.

When the lithofacies appear to follow clear geo-
metric patterns, such as sand-®lled abandoned

channels or lithi®ed dunes, object-based lithofacies
simulation algorithms are better suited.

One concern with cell-based lithofacies realiz-
ations is the presence of short scale variations/

noise. These noisy features often appear geologi-
cally unrealistic and make the realizations less cred-

ible to geologists. In some cases, the noise may
have an impact on ¯ow simulation and predicted
reserves; a more justi®able reason to consider low

pass ®lter algorithms for cleaning the realizations.

A second concern is that the lithofacies pro-

portions of sisim realizations often depart signi®-
cantly from their target (input) proportions.

Typically, small proportions (5±10%) are poorly
matched, with the simulated proportion systemati-
cally too high or too low. The main source of this

discrepancy is the order relations correction (the
estimated probabilities are corrected to be non-

negative and sum to 1.0) (see Carr, 1994). Post-pro-
cessing the realizations to honor target proportions

is a convenient and sometimes necessary solution.
The general problem of image cleaning has been

tackled by a number of workers in the area of
image analysis and statistics (e.g., Schowengerdt,

1983; Geman and Geman, 1984; Gull and Skilling,
1985; Besag, 1986; Andrews and Hunt, 1989;
Doyen and Guidish, 1989). One proposal to clean

lithofacies realizations, closely related to some of
these image analysis methods, is based on the con-

cepts of dilation and erosion (Stoyan and others,
1987; Schnetzler, 1994). This approach is well suited

to cleaning binary (only two lithofacies) images;
however, there is no explicit control over the result-

ing proportions and no extension to more than two
lithofacies types except for a sequence of nested

binary cleanings.
Iterative or simulated annealing-type algorithms

can be designed to clean lithofacies realizations
(Doyen and Guidish, 1989; Deutsch, 1992; Murray,
1993). These methods can be very powerful; how-
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ever, there are a number of practical problems (1)

they tend to be CPU intensive, (2) it is di�cult to

determine the appropriate values for a number of

tuning parameters, and (3) often, a training image

is required.

The quantile-transformation principle was

extended by Xu and Journel (subsequently pub-

lished (Journel and Xu, 1994; Xu, 1995) to clean

lithofacies realizations and impose target pro-

portions simultaneously. This approach (recalled in

Section 2) works well when there is a natural nest-

ing/ordering of the lithofacies categories, as would

be the case when the categories are based on a con-

tinuous variable such as grain size or degree of

alteration. However, as shown hereafter, unrealistic

artifacts can result when dealing with more than

two unordered lithofacies types.

In geostatistical notation, consider K mutually

exclusive and exhaustive lithofacies types sk, k = 1,

. . . , K and the following indicator transform:

ik�u� �
�
1, if lithofacies sk prevails at location u
0, if not:

�1�
Mutual exclusion and exhaustivity entail that only

one lithofacies may be present at any location u

and that any lithofacies be in the list of the K types,

that is, XK
k�1

ik�u� � 1, �2�

and

ik�u� � ik 0 �u� � 08k 6� k 0: �3�
Let {ik

(0)(u), k = 1, . . . , K, u $ A} be the set of orig-

inally simulated lithofacies values, conditional to n

local indicator data values:

i�0�k �ua� � ik�ua�, k � 1, . . . , K, a � 1, . . . , n: �4�
The problem is to calculate a set of ``clean'' lithofa-

cies types {ik
(c)(u), k= 1, . . . , K, u $ A}, that (1) is

similar to the original simulated image, (2) is less

noisy than that original image, (3) more closely

honors the target proportion of each lithofacies,

and (4) still honors the conditioning data.

The quantile-transformation procedure will be

recalled and, then, a technique based on maximum

a-posteriori selection (MAPS) will be proposed. The

key idea behind MAPS is that the lithofacies type

at each location is replaced by the most probable

lithofacies type based on a local neighborhood. The

probability of each lithofacies type is based on (1)

closeness to the location, (2) whether or not the

value is a conditioning datum, and (3) mismatch

from the global target proportion. In concept, the

approach is similar to other, published, image pro-

cessing algorithms (Schowengerdt, 1983; Besag,

1986; Doyen and Guidish, 1989) however, the

details of the weighting and the one-pass approach
are unique.

A number of examples are presented to illustrate
the applicability of the proposed MAPS algorithm.
A FORTRAN 77 program is presented.

QUANTILE TRANSFORMATION

As explained by Journel and Xu (1994), the main
goal of the quantile transformation procedure is to

correct the proportions of di�erent lithofacies
classes. A by-product of that correction procedure
is a cleaner, less-noisy, realization. The ®rst step in
quantile transformation is to order the K lithofacies

from 1 through K. Transformation from original
class k will likely be to kÿ 1 or k + 1, therefore,
the ordering of lithofacies should mimic that

encountered in the reservoir. For the hierarchy
implied by the speci®cation of sk, k= 1, . . . , K, de-
®ne the cumulative proportion values (or cdf

values) Pk
(0) from the proportions pk

(0) of originally
simulated classes:

P�0�k �
Xk
k 0�1

p
�0�
k 0 2 �0, 1�, k � 1, . . . , K �5�

with pk
(0)=Prob{Ik

(0)=1} $ [0, 1], k = 1, . . . , K and
akpk

(0)=1.

Correcting the realization {ik
(0)(u), k = 1, . . . , K,

u $ A} to honor the target probabilities (pk, k= 1,
. . . , K) requires ties to be broken. Values nearer to

borders between regions of di�erent lithofacies
should be considered for re-allocation to another
class. An ``average'' lithofacies value b(u) will be

de®ned at each location u as a moving window
average (template W containing n nearest neigh-
bors) of the category indices across all indicator

values, that is:

b�u� � 1

n�u�
X

u 02W�u�

XK
k 0�1

k 0i�0�k 0 �u 0�, �6�

where n(u) is the number of values in the template
W(u) centered at u. The b(u), u $ A values are

ranked to obtain the ranks r(u), u $ A from 1 to N,
where N is the number of originally simulated litho-
facies data. In the original presentation (Xu, 1995)

the N values were partitioned into K subsets corre-
sponding to the original indicators ik

(0), k = 1, . . . ,
K. The ranking was then done within each subset to

arrive at a global ranking. Ranking the data within
subsets places more emphasis on closeness to the
original simulated realization and less emphasis on

smoothing; a decision best made after looking at
the results for both approaches. Based on the rank-
ing, the locations can be reclassi®ed to obtain the
correct proportions, that is,
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(1) Calculate the target cdf values:

P�c�k �
Xk
k 0�1

pk 0 2 �0, 1�, k � 1, . . . , K:

(2) Determine K threshold values to apply to the

ranked r values:

rk � PkN, k � 1, . . . , K:

where the 0th threshold r0 is 0, by convention.

(3) Reclassify all locations u $ A according to

their rank r(u) and the thresholds,

i
�c�
k �u� � 1, i

�c�
k 0 �u� � 08k 0 6� k if rkÿ1<r�u�Rrk:

The resulting set of indicator values {ik
(c)(u), k= 1,

. . . , K, u $ A} will have the correct proportions pk,

k = 1, . . . , K and will be spatially smooth thanks

to the smoothing window W.

As an example, consider the K= 4 lithofacies il-

lustrated on Figure 1. The realization proportions

are 0.05, 0.20, 0.30 and 0.45, respectively; shown as

cumulative proportions of 0.05, 0.25, 0.55 and 1.0.

The target proportions are 0.10, 0.25, 0.25 and 0.40

(cumulative proportions 0.10, 0.35, 0.60 and 1.0).

The quantile transformation to the target pro-

portions involves three changes (1) 5% of lithofa-

cies 2 is transformed to 1 (see A), (2) 10% of

lithofacies 3 is transformed to 2 (see B), and (3) 5%
of lithofacies 4 is transformed to 3. The local aver-
aging procedure described above is used to break

the ties of the realization lithofacies types, e.g., to
establish which of the original 20% of lithofacies 2
to reclassify as type 1.

The quantile-transformation results can also be
made to honor local conditioning data. This algor-

ithm, including the ability to honor local condition-
ing data, has been coded in the trans program in
the second edition of GSLIB. Figure 2 shows an in-

itial 100 by 100 sisim (Deutsch and Journel,
1992) unconditional realization and the result of a
quantile transformation. The target proportions in

the unconditional sisim run were 0.05, 0.20, 0.30
and 0.45, respectively, for four lithofacies, 1, 2, 3

and 4. The same indicator variogram was used for
all categories: 10% nugget e�ect, 90% spherical
variogram with a range of 50 distance units in the

N30E direction and 20 distance units in the N120E
direction.

The proportions from the ®rst sisim realization
(left side of Fig. 2) were 0.170, 0.122, 0.210 and
0.498. This poor reproduction of the input pro-

portions is largely due to the long range of corre-
lation and the small size of the ®eld (lack of

Figure 1. Schematic illustration of quantile transformation procedure to enforce reproduction of target
lithofacies proportions

Figure 2. Sisim realization before and after quantile-transformation to match proportions
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ergodicity). Additional realizations were constructed
where the size of the ®eld A was increased by a fac-

tor of 5 (the ®eld A is now 10 times larger than the

largest range of correlation). The reproduction of

the proportions improves but still deviates from the

input proportions, see Table 1 for a summary of

the results.

The program trans from the second edition of

GSLIB was used to correct the proportions and to

clean the sisim realizations. A template W of 5

pixels by 5 pixels was used in both cases (see right

side of Figs 2 and 3). The cleaned realizations

exactly reproduce the target proportions (by con-

struction). The realizations are ``cleaner'' and show
a clear ``nesting'' of the lithofacies categories.

Unless the original lithofacies types also show nest-

ing, this nesting is considered a limitation. More

sophisticated tie-breaking procedures could be con-

sidered in the quantile-transformation algorithm;

however, the inherent limitation is that lithofacies k

be transformed to adjacent lithofacies types, k+ 1

or kÿ 1. The MAPS algorithm overcomes this limi-
tation.

MAXIMUM A-POSTERIORI SELECTION

The maximum a-posteriori selection or maps al-

gorithm, amounts to replacing the lithofacies type

at each location u by the most probable lithofacies

type based on a local neighborhood. The prob-

ability of each lithofacies type, in the neighborhood,

is based on (1) closeness to the location u, (2)

whether or not the value is a conditioning datum,

and (3) mismatch from the target proportion.

Figure 4 shows a schematic illustration: the cell

being considered will be reclassi®ed from code 1 to

code 2 because, in the neighborhood, there are

more code 2 cells thus the local probability of code

2 is higher than all other lithofacies. The lithofacies

code with the maximum probability is selected; no

random drawing is considered. Each node is con-

sidered independently of all others; the algorithm is

not sequential. Note also that the maps algorithm

does not ensure exact reproduction of the target

proportions.

As before, consider an original indicator realiz-

ation {ik
(0)(u), k= 1, . . . , K, u $ A} at N locations

Table 1. Target sisim proportions for simulations with four lithofacies. Base case results are for ®eld size A two times
larger than variogram range in one direction and ®ve times larger than range in perpendicular direction. Results for
``Field 5�A'' are for ®eld size 10 times larger than range in one direction and 25 times larger in perpendicular direction

Category Target Realizations 1±5

1 0.05 0.170 0.097 0.000 0.001 0.182
2 0.20 0.122 0.078 0.357 0.187 0.224
3 0.35 0.210 0.124 0.254 0.296 0.228
4 0.45 0.498 0.701 0.389 0.516 0.366

Category Target Field 5�A: Realizations 1±5

1 0.05 0.080 0.056 0.052 0.059 0.057
2 0.20 0.179 0.192 0.219 0.236 0.198
3 0.30 0.323 0.261 0.274 0.269 0.330
4 0.45 0.418 0.491 0.455 0.435 0.415

Figure 3. Sisim realization before and after quantile-transformation to match proportions. Field size is
5 times larger than that shown in Figure 2, that is, there are 100 by 100 nodes in each realization Ð

spacing between nodes is 5 times greater in realization shown here
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taking one of K lithofacies types, sk, k= 1, . . . , K.

There is no requirement for the lithofacies sk,

k = 1, . . . , K to be in any particular order. The

proportions of each lithofacies type in the realiz-

ation are pk
(0), k= 1, . . . , K. The target proportions

of each lithofacies type are pk, k = 1, . . . , K.

At each of the N locations u $ A, calculate a local

probability qk(u) based on a weighted combination

of surrounding indicator values:

qk�u� � 1

S

X
u 02W�u�

w�u 0� � c�u 0� � pk
p�0�k
� i�0�k �u 0� 2 �0, 1�,

k � 1, . . . , K, �7�
where S is a standardization constant to enforce

akqk(u) = 1.0, W(u) is a template of points centered

at location u, and w(u') and c(u') are weights to

account for closeness to u and nearby conditioning

data, more precisely:

* w(u'): weight accounting for closeness to u: to

achieve realization cleaning it is necessary to estab-

lish which other lithofacies are present in the neigh-

borhood of u. The de®nition of the local

neighborhood template W(u) and the weights within

it control the extent of realization cleaning. Figure

5 illustrates three possible weighting functions. The

geometry and size of W and the weight function are

determined by trial-and-error; see later in this

paper.

* c(u'): = weight to ensure reproduction of

conditioning data =1.0 at all non-data locations,

and equal to C; C $ (1, 10] at conditioning data

Figure 4. Schematic illustration of maps algorithm: at each location probability of each category is
established on basis of nearby lithofacies codes, conditioning data, and mismatch from target pro-
portions. Lithofacies at this location is reclassi®ed to code 2 because, within local neighborhood, there

are many code 2 lithofacies

Figure 5. Three possible weight functions w(u') to be used within local neighborhood W for image
cleaning
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locations, u'= ua, a= 1, . . . , n. A large value of C,

say C>10, would entail that conditioning data

have a large impact within their neighborhood, i.e.,

qk(u)1 ik
(c)(u').

The term pk/pk
(0) in Equation (7) ensures that the

lithofacies proportions in the cleaned image get clo-

ser to the target global proportions. The probability

of a particular lithofacies qk is decreased if the orig-

inal proportion of that lithofacies is too high and

increased otherwise.

Figure 6 repeats the two sisim realizations

shown at the right of Figures 2 and 3 and shows

the corresponding maps cleaned realizations. The

cleaning considered a 5 by 5 pixel template W with

the weights w(u') decreasing linearly from the cen-

tral value u. The images are cleaner and the pro-

portions of the four lithofacies types are closer to

their target values, see Table 2. In the next section,

we study the impact of the weighting scheme and

reproduction of conditioning data.

Figure 6. Two sisim realizations shown in Figures 2 and 3 and corresponding maps cleaned realiz-
ations

Table 2. Target and actual proportions before and after
cleaning with maps; proportions after cleaning are closer

to target proportions

First realization
First 5�A
realization

Category Target initial ®nal initial ®nal

1 0.05 0.170 0.096 0.080 0.049
2 0.20 0.122 0.158 0.179 0.181
3 0.35 0.210 0.236 0.323 0.308
4 0.45 0.498 0.510 0.418 0.463
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SENSITIVITY ANALYSIS

The size of the template W and the weighting

function w(u') have a signi®cant impact on the

``cleanliness'' of the results. In general, the image

will appear smoother/cleaner when a larger smooth-
ing window and more uniform weights are con-

sidered. Figure 7 illustrates how the ®rst sisim
realization shown on Figure 6 is cleaned with three

di�erent templates W and weights w(u'). Anisotropy

can be introduced to the template W and weights

w(u') to avoid over smoothing of original anisotro-

pic features.

Conditioning data are enforced by the weights

c(u') within the local neighborhood; c(u') is equal to
1.0 at all non-data locations, and equal to a larger

value C at conditioning data locations, u'= ua,

a= 1, . . . , n. Figure 8 shows two sisim realiz-

ations before and after cleaning. The well con-

ditioning data are reproduced in both cases. The

region on the ®rst realization shown by the circle is

Figure 7. Three square templates and corresponding weights and cleaned images starting from ®rst
sisim realization shown in Figure 6
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expanded and shown at the left of Figure 9; keeping

all parameters but C ®xed, the impact of increasing

C from 2 to 5 is observed. The lithofacies observed

at the vertical well are propagated continuously

away from the well. The extent of the propagation

depends on the magnitude of C and the size of the

cleaning template W; a conditioning datum can

a�ect only those nodes within the template W.

The term pk/pk
(0) in Equation (7) leads the cleaned

image toward the target proportions. Table 2 shows
how the cleaned proportions are closer to the target

proportions. As another example, 100 unconditional

Figure 8. Two sisim realizations before and after cleaning. Note reproduction of conditioning data
along vertical string at left
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sisim realizations were generated with two litho-

facies types with global proportions 0.1 and 0.9,

100 by 100 cells, and isotropic correlation length of

33 cells. Figure 10 shows the proportions of the

lithofacies in the 100 sisim realizations before

and after cleaning. The target proportions are more

closely reproduced. In general, variability in lithofa-

cies proportions is an inherent aspect of uncertainty

and perfect reproduction of target proportions is

not a critical goal.

One could devise measures of similarity between

the original and cleaned images, e.g. the proportion

of cells that have changed. Quantitative measures

necessarily favor one particular aspect of the pro-

blem such as (1) closeness to the original image, (2)

reproduction of target proportions, or (3) smooth-

ness or cleanliness of the resulting image. For this

reason, no quantitative measures of image cleaning

are presented.

As a ®nal example, Figure 11 shows two sequen-
tial indicator simulation lithofacies models before
and after cleaning.

PROGRAM PARAMETERS

The GSLIB programs have been used throughout
this paper for calculations and supporting graphics.

A general purpose ``MAPS cleaning'' program
maps was written to clean lithofacies realizations in
2D/3D accounting for local data with arbitrary

weighting terms.
The maps program follows GSLIB conventions.

The parameters required for the program are listed

below and shown in Figure 12:
* data¯: the input ®le containing the categorical

lithofacies realization to be cleaned. The standard
GSLIB/GeoEAS format is expected. Although there

Figure 9. Portion of ®rst sisim realization shown in Figure 8 and two cleaned versions. Factor C for
conditioning is 2 in ®rst case and 5 in second case; all other parameters are unchanged

Figure 10. Proportion of lithofacies ``1'' and ``2'' in 100 sisim realizations before and after cleaning;
target proportions were 0.1 and 0.9. Solid line is histogram of lithofacies proportions from sisim,
that is, actual proportion of lithofacies 1 varies between 0.0 and 0.4 and actual proportion of lithofacies
2 varies between 0.6 and 1.0. Dashed line represents actual proportion after cleaning, which is closer to

target proportions
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Figure 11. Two sequential indicator simulation lithofacies models before and after cleaning

Figure 12. Parameter ®le for maps program
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may be multiple columns in the data ®le, the ®rst
column is taken as the lithofacies categories.

* out¯: output ®le for the cleaned realization.
The cleaned realization will be written to a standard
GSLIB ®le for plotting with pixelplt . . .

* nx, xmn and xsiz: the size of the model in the
X direction.
* ny, ymn and ysiz: the size of the model in the

Y direction.
* nz, zmn and zsiz: the size of the model in the

Z direction.

* isim: the realization number to clean. maps
only cleans one realization at a time. The program
can be repeated for each realization, could be modi-
®ed to automatically loop over multiple realizations,

or a script ®le could be used to loop the program
over multiple realizations.
* ncat: the number of categories in the realiz-

ation. Any unde®ned categories are grouped into
the ®rst category; missing values are not allowed.
* cat( ): the integer coded lithofacies categories

in the input data ®le. The values in the input data
are rounded to the nearest integer.
* pk( ): the target proportions for each cat-

egory. The local probabilities are weighted so that
the cleaned result is closer to these input target pro-
portions. The program would require modi®cation
to not consider target proportions (the pk values

could, of course, be set to the realization pro-
portions, which would entail no special weighting).
* f( ): the factors to weight the target pro-

portion of each category (normally set to 1.0)
* cond¯: ®le containing the conditioning data.

No conditioning data will be used if this ®le does

not exist.
* icolx, icoly, icolz and icolcat: the column num-

bers for the X, Y, and Z coordinate and the categ-
orical lithofacies code in the conditioning data ®le.

* C: the factors that weights the conditioning
data to ensure the cleaned realization honors the
conditioning data.

* niter: number of iterations for the entire clean-
ing procedure (normally 1 is su�cient).
* nxs, nys and nzs: size of the W template for

cleaning Ð these are half-window sizes, e.g.,
nxs = 4 implies that W will be 9 cells large
(2�4 + 1) in the X direction

* w( ): the weights to use within W. There are
nxs values per row, nys rows for the ®rst z slice,
repeated nzs times for each z slice.

CONCLUSIONS

The motivation for cleaning categorical lithofa-
cies realizations is both aesthetic and practical;

noisy lithofacies realizations appear geologically
unrealistic and may lead to ¯ow simulation results
with too di�usive ¯ow character. Cleaning with
classic erosion/dilation is not straightforwardly

applied to realizations with more than two lithofa-
cies types. Quantile-transformation procedures

applied in cases of more than two lithofacies
imparts a nesting/ordering of the lithofacies that
may be unrealistic. Iterative, simulated-annealing

based, cleaning algorithms often require a training
image and have a large number of tuning par-
ameters to de®ne. The maximum a-posteriori selec-

tion maps procedure described here overcomes
many of these problems.
In maps, the most probable lithofacies category

is retained at each location. The corrected local
probability for each category takes into account the
surrounding originally simulated categories, proxi-
mity to conditioning data, and the original mis-

match from the global target proportion of each
lithofacies. Examples show that the approach
appears ¯exible in its ability to clean images.

The main drawback is that there are still a num-
ber of user-de®ned parameters required to ensure
conditioning data reproduction and to de®ne the

weighting function. A conceptual drawback of all
realization cleaning algorithms is that real short
scale variations in lithofacies may be removed for

the sake of nice, clean, pretty pictures.
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